

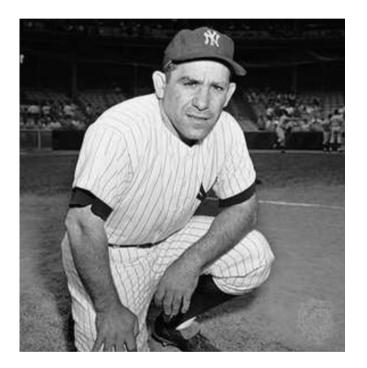
Profilassi, interventi precocci e trattamento del relapse post-trapianto

Marta Stanzani Ematologia – Ospedale Ca' Foncello, ULSS2, Treviso

HIGHLIGHTS IN ENATOLOGIA TREVISO, 18-19 NOVEMBRE 2022

Disclosures of Marta Stanzani

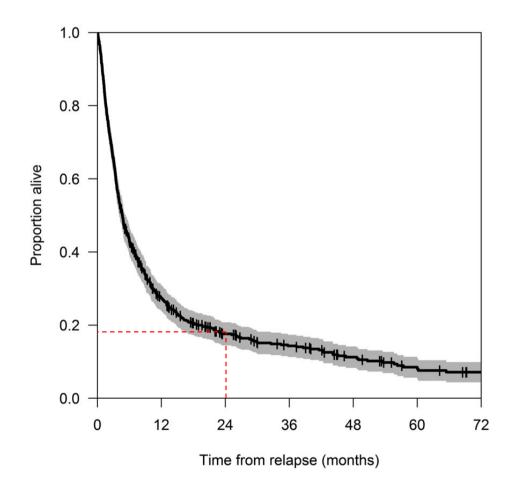
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other


Profilassi, interventi precoci e trattamento del relapse post-trapianto

Marta Stanzani, MD, PhD

19 novembre 2022

Key Points


- 1. Relapse prognosis and risk factors
- 2. Methods to detect relapse/MRD Molecular methods Cytofluorimetry methods Chimerism
- 3. Clinical strategies Maintenance approach Preemptive approach Therapeutic approach
- 4. Therapeutic strategies Cellular-Based therapies Drug-Based therapies Combo therapies

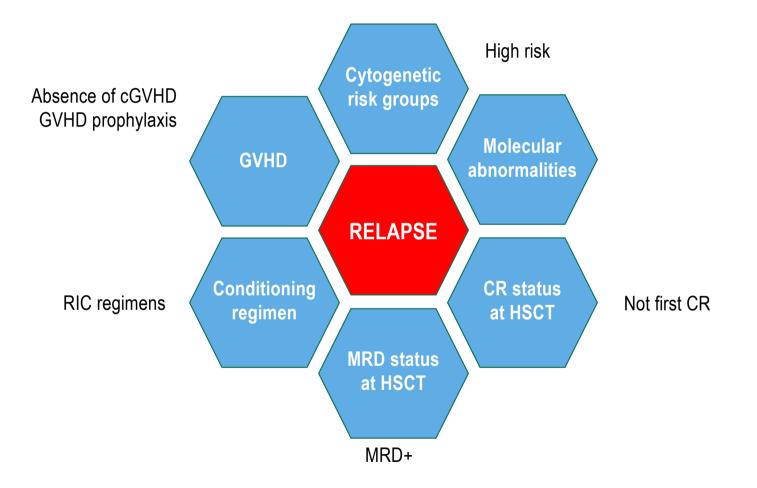
"It's tough to make predictions, especially about the future."

— Yogi Berra

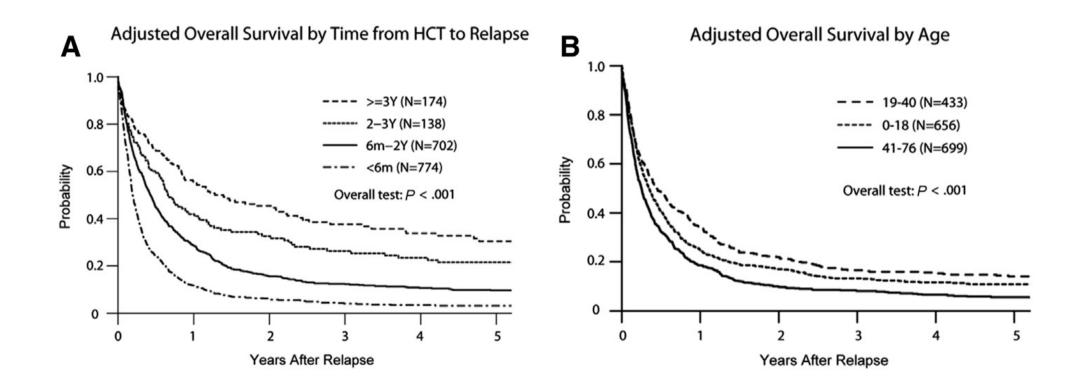
AML & MDS Relapse After-Transplant

Schmid C et al. EHA. Haematologica. 2018; 103(2):237-245

A Journey That Begins at Diagnosis

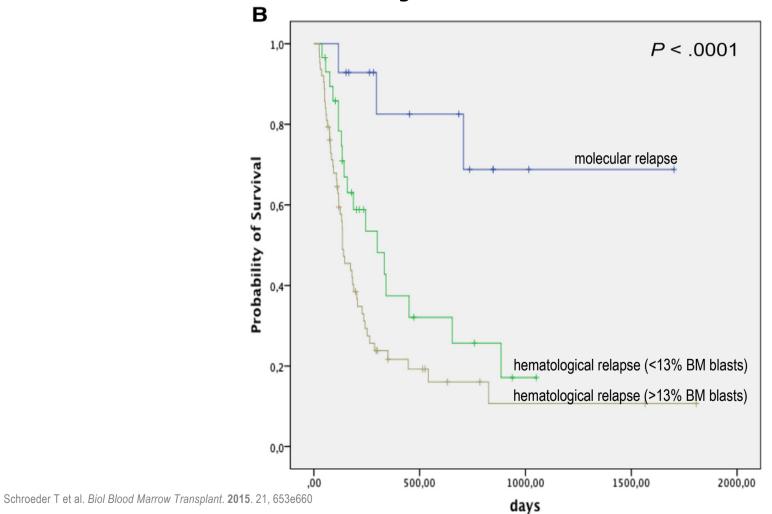

FAVORABLE

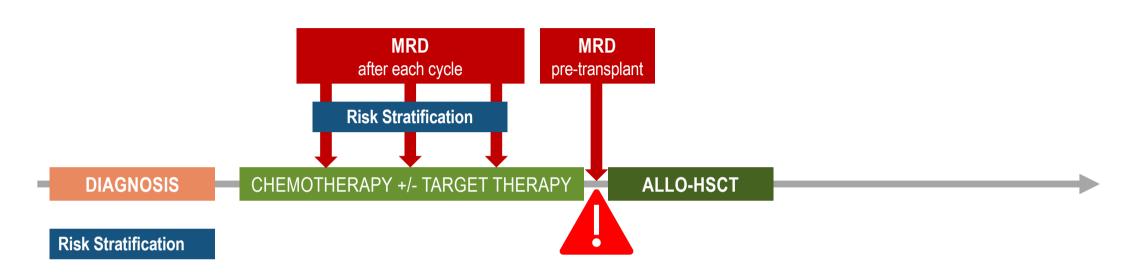
- t(8;21)(q22;q22.1); RUNX1-RUNX1T1
- inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB
 MYH11 Mutated NPM1 without FLT3-ITD or with FLT3-ITD^{Iow} Biallelic mutated CEBPA


INTERMEDIATE	 Mutated NPM1 and FLT3-ITDhigh Wild-type NPM1 without FLT3-ITD or with FLT3-ITD^{low}(without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A Cutogenetic abnormalities not classified as favorable or adverse 	
`	 Cytogenetic abnormalities not classified as favorable or adverse 	J
	INTERMEDIATE	• Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} (without adverse-risk genetic lesions)

ADVERSE	 t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) -5 or del(5q); 27; 217/abn(17p) Complex karyotype, monosomal karyotype Wild-type NPM1 and FLT3-ITD^{high} Mutated RUNX1 Mutated ASXL1 Mutated TP53 	
---------	--	--

Risk Factors for Relapse After Transplant

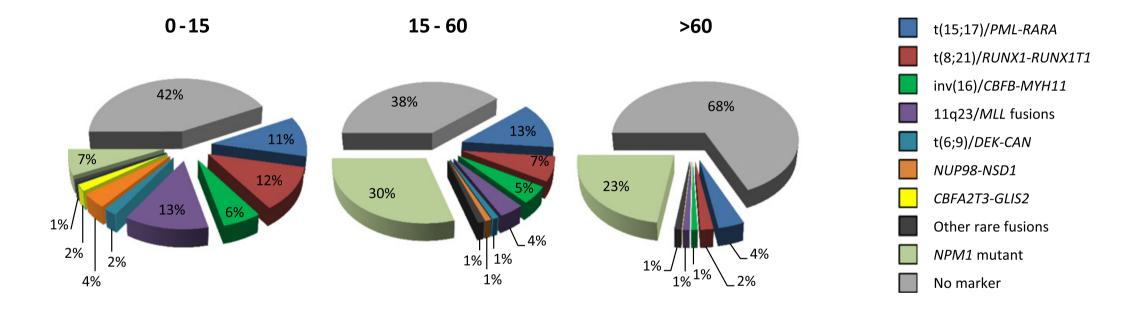



Overall Survival in Relapsed Patients After Transplant by Time to Relapse and Age

Bejanyan N et al. Biol Blood Marrow Transplant. 2015. 21, 454e459

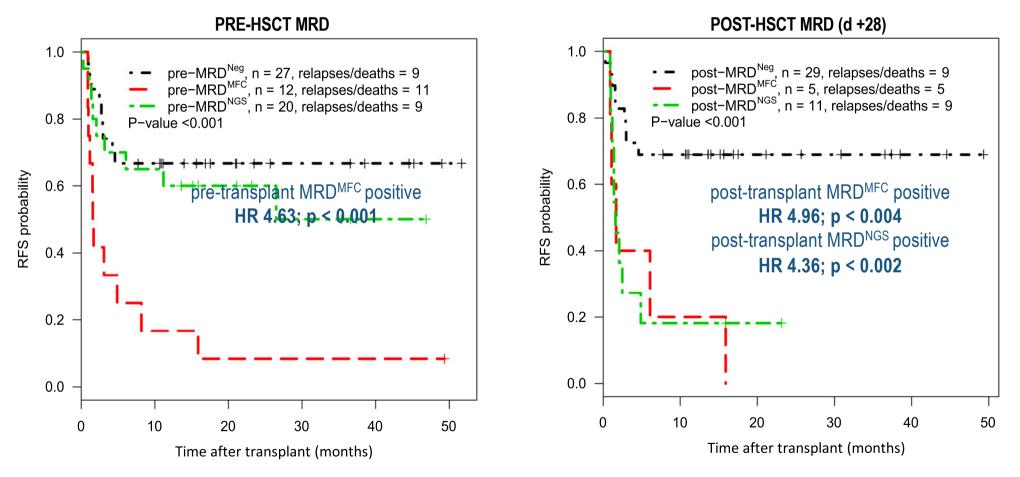
Overall Survival in Relapsed Patients After Transplant by Disease Burden

Therapeutic strategy

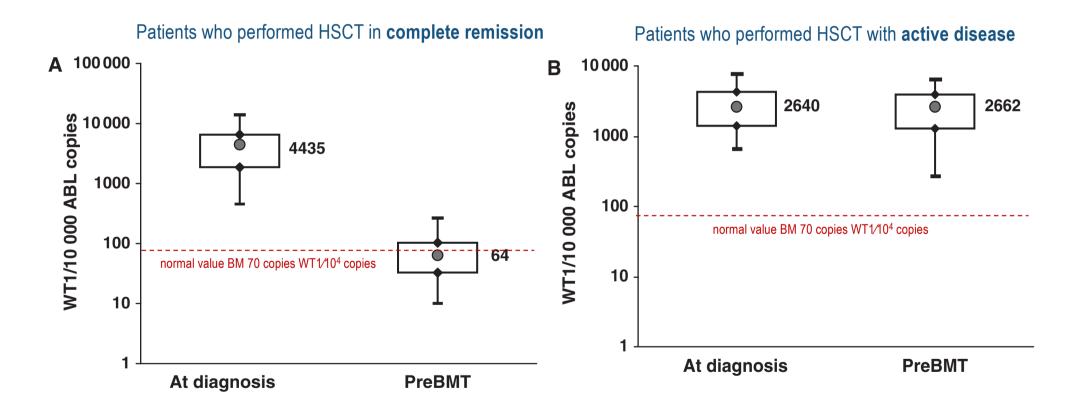

- Target therapies
- Conventional CTH
- Allo-HSCT in 1CR

Adapted from: Rautenberg C et al. Int. J. Mol. Sci. 2019; 20, 228

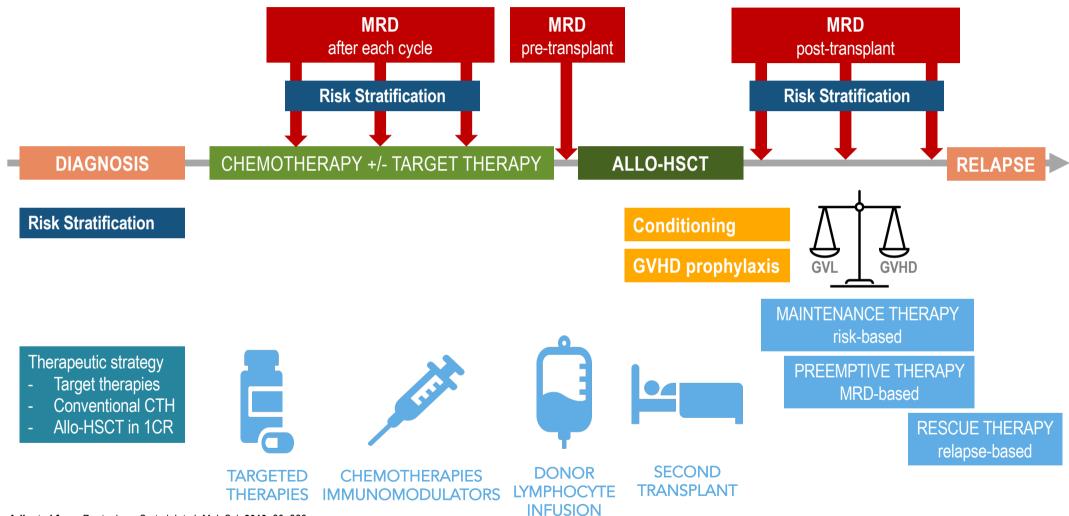
Methods to Detect MRD Before and After HSCT


	Multiparametric Flow Cytometry	Molecular Genetics Mutated Genes: NPM1, FLT3, IDH1-2 Fusion Gene Transcripts: CBF (CBFB-MYH11;RUNX1-RUNX1T1) Gene Overexpression: WT1 	Chimerism (only post-transplant)
Methods	 Leukemia-Associated Immunephenotype (LAIP) Different from Normal (DfN) 	 Quantitative PCR Digital Droplet PCR Next Generation Sequencing 	 Deletions-Insertions (DIP-PCR) Short-Tandem-Repeats (STR-PCR) Variant-Allele-Specific quantitative PCR X-Y-FISH CD34+ cell subset analysis
Sensitivity	10 ⁻³ –10 ⁻⁴ (BM)	10 ⁻⁶	10 ⁻² -10 ⁻³ 10 ⁻⁴ -10 ⁻⁵
Advantages	Broad applicability (90% of patients)	High sensitivity and specificity	Applicable in all patients after allo-SCT
Comments	Need for standardization	Mostly restricted to select patientsNeed for standardizatiom	Low sensitivity and specificityNot directly detecting leukemic cells

Minimal Residual Disease


Grimwade D, et al. Blood. 2014; 124(23):3345-3355

NPM1+ Pre and Post-Transplant Is the Most Important Factor for Relapse After Transplant



Zhou Y et al. Biol Blood Marrow Transplant. 2018. 24, 1615–1620

WT1 Gene Expression After Transplant is for monitoring MDR in AML

Interventions in High-Risk Patients

Adjusted from: Rautenberg C et al. Int. J. Mol. Sci. 2019; 20, 228

Strategy for Relapse Prevention

IMPROVED CONDITIONING REGIMENS

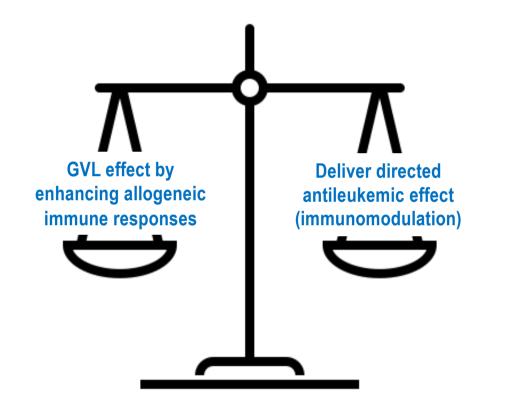
Incorporating drugs with strong antileukemia activity

EARLY WITHDRAWAL OF IMMUNOSUPPRESSION

High risk of GVHD may offset reduced relapse risk

MAINTENANCE

- Relapse risk defined by pre-transplantation parameters
- Ideal maintenance agent:
 - Documented activity against the disease
 - Acceptable non-hematologic toxicity (will be tolerated early after transplant)
 - Acceptable myelotoxicity (will not interfere with engraftment)
 - Minimal drug interactions
 - Will not inhibit GVT
 - Will not worsen GVHD


PREEMPTIVE TREATMENT

- Monitoring for MRD
- Intervention based on detection of MRD

Prevention Approach

- \checkmark To reduce the risk of relapse in HR patients
- ✓ Choose agents have proven efficacy in other settings
- ✓ Prospective Phase II and III clinical trials after transplant are limited:
 - competing risk (cytopenias, organ toxicity, infections, GVHD)
 - side effects (more difficult to predict in the post-transplant immunological environment)
 - difficult recruitment

Cellular-Based versus Drug-Based Strategies

Allogeneic: Adult

Donor Lymphocyte Infusion for Relapsed Hematological Malignancies after Unrelated Allogeneic Bone Marrow Transplantation Facilitated by the Japan Marrow Donor Program

CrossMark

Toshihiro Miyamoto ^{1,*}, Takahiro Fukuda ², Marie Nakashima ³, Tomoko Henzan ⁴, Shinsuke Kusakabe ⁵, Naoki Kobayashi ⁶, Junichi Sugita ⁷, Takeshi Mori ⁸, Mineo Kurokawa ⁹, Shin-ichiro Mori ¹⁰ for the Medical Committee of Japan Marrow Donor Program, Japanese Data Center for Hematopoietic Cell Transplantation

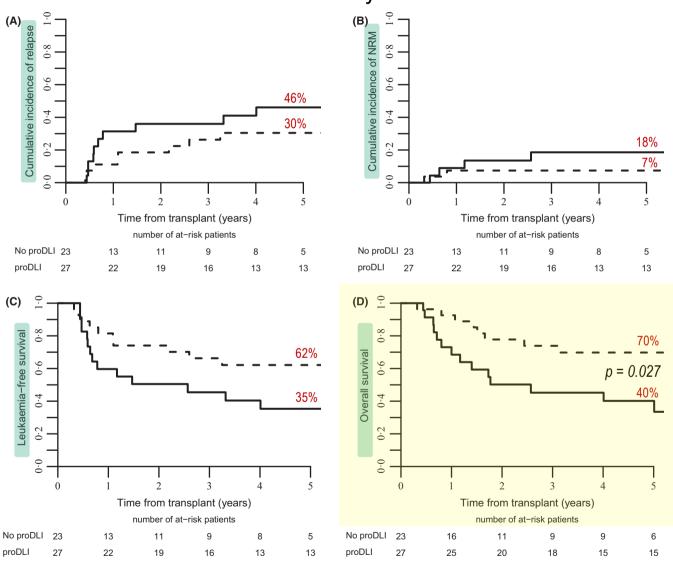
Retrospective, Mixed Diseases, 414 patients

Outcome on 100 Days after UDLI

Disease Status at UDLI		Numbers of DLI*		Infused CD3 ⁺ Cells, $\times 10^7/kg^\dagger$		Response at 100 Days after DLI					
		1	2	≥3	First DLI	Second DLI	Total	CR	PR	NR	NE
Molecular/ cytogenetic relapse	65							37 (57%)	6 (9%)	16 (25%)	
DLI alone	40	25	7	8	1.0 (.03-15.6)	1.79 (.33-15.6)	2.54 (.05-24.8)	20 (50%)	3 (7%)	12 (30%)	5
Combination with UDLI	25	12	5	8	1.0 (.1-4.47)	1.72 (.5-6.0)	2.97 (.10-11.0)	17 (68%)	3 (12%)	4 (16%)	1
Hematological relapse	349							69 (20%)	28 (8%)	216 (62%)	
DLI alone	108	49	39	20	1.0 (.05-11.1)	2.31 (.05-11.0)	4.0 (.05-18.18)	22 (20%)	10 (9%)	66 (61%)	10
Combination with UDLI	241	133	65	43	1.0 (.04-17.0)	2.0 (.05-10.0)	3.74 (.1-43.03)	47 (20%)	18 (7%)	150 (62%)	26
Total	414	219 (54%)	116 (28%)	79 (19%)	1.0 (.03-17.0)	1.72 (.05-15.6)	3.51 (.05-43.03)	106 (26%)	34 (8%)	232 (56%)	42 (10%)

Multivariate Analysis of Risk Factors for Complete Response

Predictors	Multivariate	Р
	HR (95% CI)	
Patient age		
Sex mismatch		
Year of UD-BMT		
<2007 versus >2007		
Disease status at relapse	.190 (.0934429)	<.001
Molecular/cytogenetic versus hematological relapse		
Interval, BMT to relapse		
Interval, BMT to UDLI	.999 (.999-1.00)	.062
Acute GVHD after BMT		
Chronic GVHD after BMT		
Occurrence of GVHD after UDLI	.543 (.319922)	.024
Severity of GVHD after UDLI		
Grade I-II versus none	.527 (.236-1.180)	.118
Grade III-IV versus none		
DLI alone versus DLI + chemotherapy		
No. of the first infused CD3 ⁺ cells		
Total no. of infused CD3 ⁺ cells		
No. of UDLI infusions		
UDLI for CML versus other diseases	4.980 (1.540-16.100)	.007


GVHD after	UDLI					
GVHD*	n	Response after UDLI				
		CR	PR	NR	NE	
None	276 (67%)	64 (23%)	16 (6%)	173 (63%)	23	
Grade I	29 (7%)	8 (28%)	5(17%)	13 (45%)	3	
Grade II	41 (10%)	17 (41%)	4(10%)	16(39%)	4	
Grade III	27 (6%)	8 (30%)	5 (18%)	12 (44%)	2	
Grade IV	26 (6%)	9 (38%)	4(15%)	9 (35%)	4	
NE	15			9	6	
Total	414	106 (26%)	34 (8%)	232 (56%)	42 (10%)	

* Occurrence of GVHD was significantly associated with CR (P = .017).

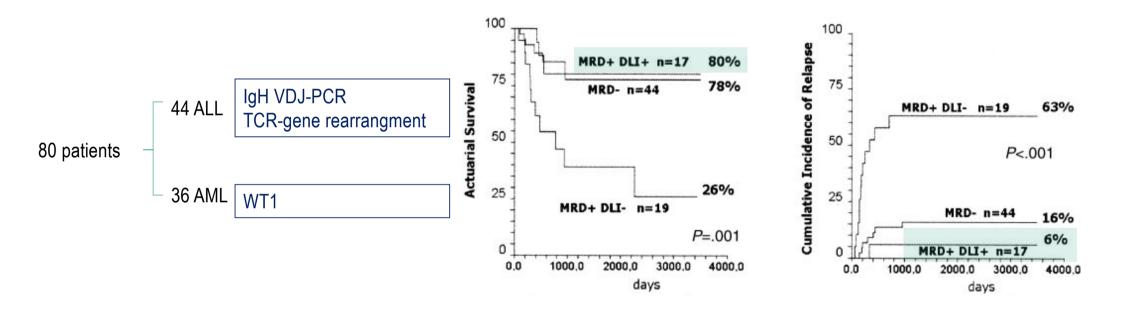
bjh short report

Prophylactic donor lymphocyte infusion after allogeneic stem cell transplantation in acute leukaemia – a matched pair analysis by the Acute Leukaemia Working Party of EBMT

Christoph Schmid, ¹ (D Myriam Labopin, ² Nicolaas Schaap, ³	2018 British Society for Haematology and John Wiley & Sons Ltd British Journal of Haematology, 2019, 184, 782–787
Hendrik Veelken, ⁴ Michael Schleuning, ⁵	
Michael Stadler, ⁶ Ju ergen Finke, ⁷	
Erin Hurst, ⁸ Frederic Baron, ⁹	
Olle Ringden, ¹⁰ (D) Gesine Bug, ¹¹	
Didier Blaise, ¹² Johanna Tischer, ¹³ (D	
Adrian Bloor, ¹⁴ Jordi Esteve, ¹⁵	
Sebastian Giebel, ¹⁶ Bipin Savani, ¹⁷	
Norbert-Claude Gorin, ¹⁸ Fabio	
Ciceri, ¹⁹ 🝺 Mohamad Mohty, ^{20,} *	
Arnon Nagler ^{21,*} and on behalf of the	
EBMT Acute Leukaemia Working Party	

5-year Outcome in HR Patients

Median 2 infusions 3 x 10⁶/kg within 1 year from HSCT Cumulative Incidence **aGVHD III-IV°** 4.5% **cGVHD** 28%


Schmid C et al. British Journal of Haematology, 2019, 184, 782-787

BLOOD, 1 JUNE 2007 · VOLUME 109, NUMBER 11

To the editor:

Donor lymphocyte infusions for the treatment of minimal residual disease in acute leukemia

Alida Dominietto, Sarah Pozzi, Maurizio Miglino, Flavio Albarracin, Giovanna Piaggio, Francesca Bertolotti, Raffaella Grasso, Simona Zupo, Anna Maria Raiola, Marco Gobbi, Francesco Frassoni, and Andrea Bacigalupo

VOLUME 31 · NUMBER 26 · SEPTEMBER 10 2013

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Second Allograft for Hematologic Relapse of Acute Leukemia After First Allogeneic Stem-Cell Transplantation From Related and Unrelated Donors: The Role of Donor Change

Maximilian Christopeit, Oliver Kuss, Jürgen Finke, Ulrike Bacher, Dietrich Wilhelm Beelen, Martin Bornhäuser, Rainer Schwerdtfeger, Wolfgang Andreas Bethge, Nadezda Basara, Martin Gramatzki, Johanna Tischer, Hans-Jochem Kolb, Lutz Uharek, Ralf G. Meyer, Donald Bunjes, Christof Scheid, Hans Martin, Dietger Niederwieser, Nicolaus Kröger, Hartmut Bertz, Hubert Schrezenmeier, and Christoph Schmid

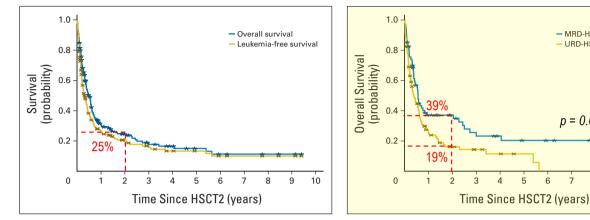


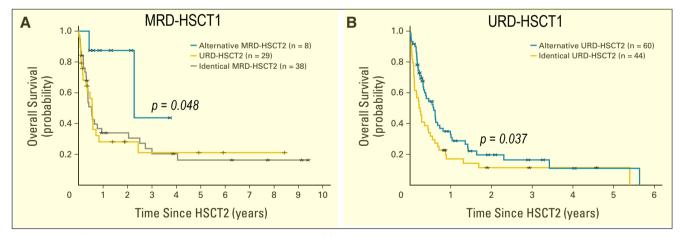
Fig 1. Probabilities of overall survival and leukemia-free survival for the entire cohort (N = 179) were $31\% \pm 4\%$ and $26\% \pm 4\%$, respectively, at 1 year and $25\% \pm 4\%$ and $21\% \pm 3\%$, respectively, at 2 years from second hematopoietic stem-cell transplantation (HSCT2).

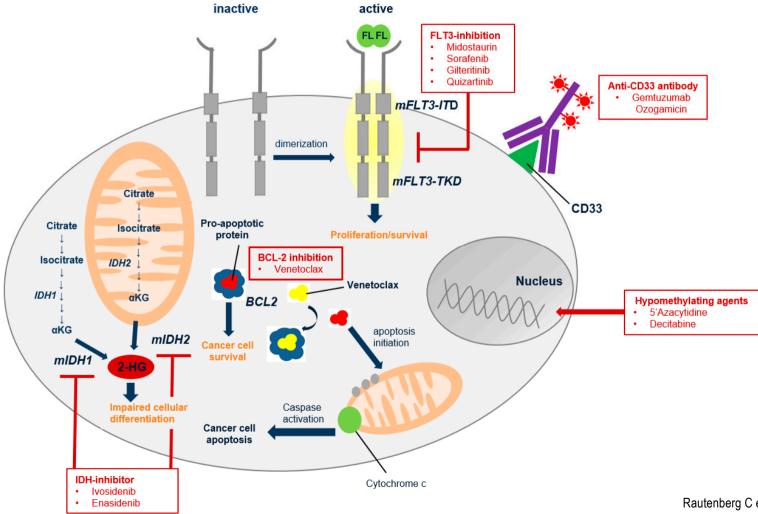
Fig 2. Overall survival from second hematopoietic stem-cell transplantation (HSCT2) in patients after first hematopoietic stem-cell transplantation (HSCT1) from matched related donor (MRD) and from unrelated donor (URD; hazard ratio, 1.53; 95% Cl, 1.08 to 2.18; P = .016).

- MRD-HSCT1 (n = 75) - URD-HSCT1 (n = 104)

p = 0.016

6 7 8 9 10




Fig 3. The role of donor at second hematopoietic stem-cell transplantation (HSCT2) was analyzed separately in cohorts with relapsed acute leukemia after related and unrelated first allogeneic hematopoietic stem-cell transplantation (HSCT1). (A) After related HSCT1 (n = 75), identical outcome was observed after using the same matched related donor (MRD) or changing to an unrelated donor (URD) for HSCT2 (hazard ratio [HR], 1.02; 95% CI, 0.77 to 1.36; P = .891). In contrast, overall survival (OS) was superior in eight patients receiving HSCT2 from another MRD (HR, 4.17; 95% CI, 1.01 to 17.18; P = .048). (B) After relapse from an unrelated HSCT1 (n = 104), change to another URD resulted in improved OS from HSCT2 compared with HSCT2 from the same URD (HR, 0.63; 95% Cl, 0.41 to 0.97; P = .037).

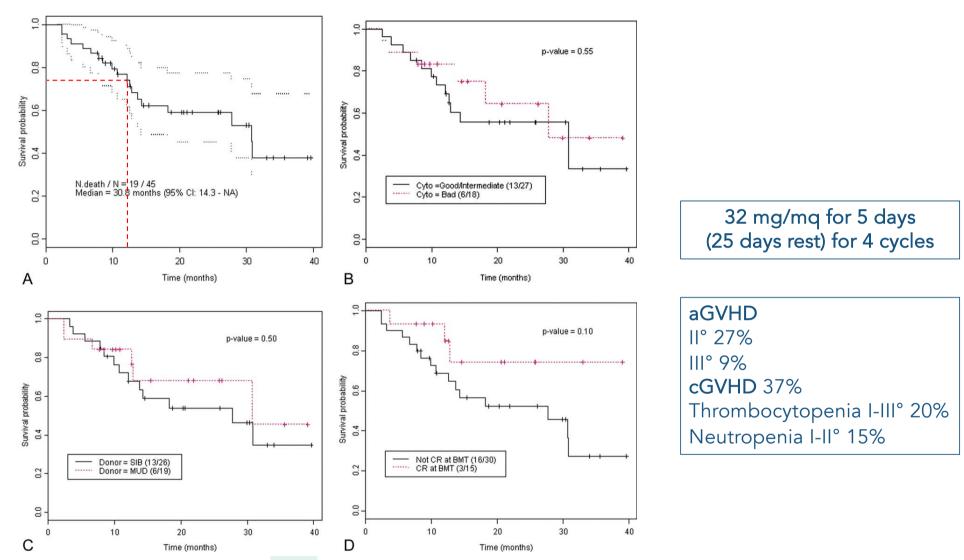
Christopeit M et al. J Clin Oncol, 2013, 31, 3259-3271

Drug-Based Therapies

- ✓ DLI, second HSCT and chemotherapy achieve long-term outcomes in only 5% of cases
- ✓ The best therapeutic potency is applied in the context of CR after transplant: MAINTENANCE
- \checkmark The optimal duration of maintenance therapies is unclear:
 - 12 months
 - 24 months
- ✓ Are targeted maintenance therapies applied to all novel agents approved in AML (FLT3-inhibitors, BCL-2 inhibitor, IDH1/2 inhibitor)?

Targeted-Therapy Based Strategies

Rautenberg C et al. Int. J. Mol. Sci. 2019; 20, 228


Original Article

Maintenance Therapy With Low-Dose Azacitidine After Allogeneic Hematopoietic Stem Cell Transplantation for Recurrent Acute Myelogenous Leukemia or Myelodysplastic Syndrome

A Dose and Schedule Finding Study

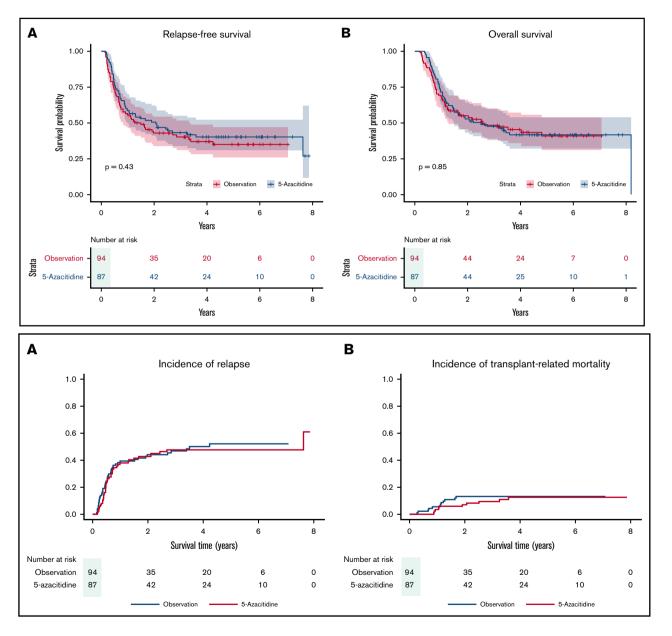
Marcos de Lima, MD¹; Sergio Giralt, MD¹; Peter F. Thall, PhD²; Leandro de Padua Silva, MD¹; Roy B. Jones, MD¹; Krishna Komanduri, MD³; Thomas M. Braun, PhD⁴; Hoang Q. Nguyen, PhD²; Richard Champlin, MD¹; and Guillermo Garcia-Manero, MD⁵

Cancer 2010;116:5420-31

Figure 1. Kaplan-Meier estimates of overall survival (n = 45) are shown for (A) all patients, (B) patients by cytogenetics risk group, (C) patients by donor type, and (D) patients by remission status at the time of transplantation. There was no significant difference noted among the subgroups for any of the 3 variables (log-rank *P* values of .55, .50, and .10, respectively). Cl indicates confidence interval; NA, not available; Cyto, cytogenetics; SIB, sibling; MUD, matched unrelated donor; CR, complete remission; BMT, bone marrow transplantation.

De Lima M et al. Cancer, 2010, 116, 5420-5431

REGULAR ARTICLE


Solution blood advances

A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients

Betül Oran,¹ Marcos de Lima,² Guillermo Garcia-Manero,³ Peter F. Thall,⁴ Ruitao Lin,⁴ Uday Popat,¹ Amin M. Alousi,¹ Chitra Hosing,¹ Sergio Giralt,⁵ Gabriela Rondon,¹ Glenda Woodworth,¹ and Richard E. Champlin¹

¹Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX; ²University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH; ³Department of Leukemia and ⁴Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX; and ⁵Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

32 mg/mq for 5 days every 28 days for 12 cycles

Oran B et al. Blood Adv, 2020, 4, 5580-5588

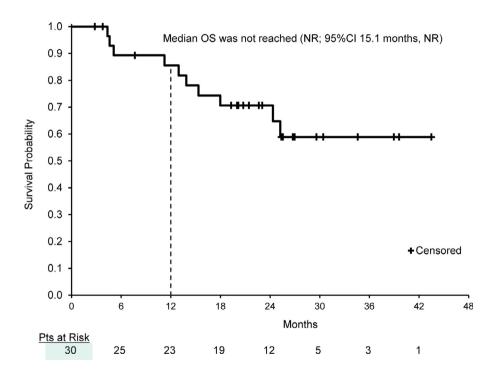
	Azacitidine	arm*	Observation	Observation arm		
AE	Any grade (no. of events), $n = 302$	Grade 3-5 (no. of events)†	Any grade (no. of events, $n = 215$	Grade 3-5 (no. of events)		
Hematologic	143	58	5	5		
Thrombocytopenia	119	29	1	1		
Poor graft function	33	29	2	2		
Nonhematologic	159	33	210	56		
Infection	42	13	52	19		
Gastrointestinal	41	0	44	12		
Hepatic	17	9	19	5		
Pulmonary	7	4	8	6		
Skin	27	2	32	5		

Table 4. Summary of grade 3, 4, and 5 AEs

GVHD	Azacitidine arm	Observation arm
Acute (+100) II-IV°	25.5%	29%
Acute (+100) III-IV°	4%	2%
Chronic (1-year incidence)	26%	31%

Oran B et al. *Blood Adv*, 2020, 4, 5580-5588

Biol Blood Marrow Transplant 24 (2018) 2017-2024


CC-486 Maintenance after Stem Cell Transplantation in Patients with Acute Myeloid Leukemia or Myelodysplastic Syndromes

Marcos de Lima^{1*}, Betul Oran², Richard E. Champlin², Esperanza B. Papadopoulos³, Sergio A. Giralt³, Bart L. Scott⁴, Basem M. William⁵, Joel Hetzer⁶, Eric Laille⁶, Becky Hubbell⁶, Barry S. Skikne⁶, Charles Craddock⁷

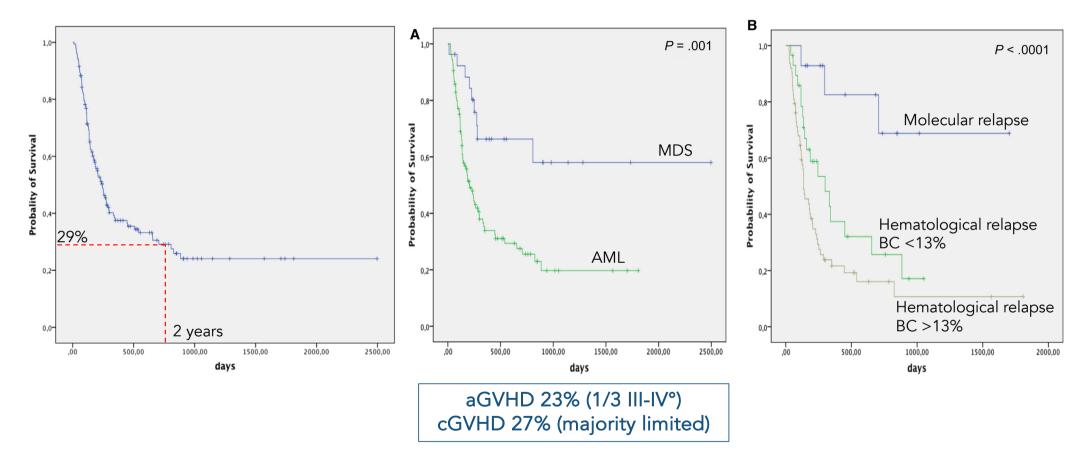
Phase I/II Dose-Finding - Prospectic Study

200 mg/day for 14 days (28-day cycle) max 12 cycles

AE	Total (N = 30)
Patients with \geq 1 grade 3-4 TEAE	22 (73)
Hematologic	
Lymphopenia	6(20)
Neutropenia	5(17)
Anemia	4(13)
Thrombocytopenia	3(10)
gastrointestinal	. ,
Diarrhea	6(20)
Vomiting	5(17)
Nausea	4(13)
GI GVHD*	3 (10)
Abdominal pain	2(7)
Other	()
Device-related infection	2(7)
Dehydration	2(7)
Pneumonia	2(7)

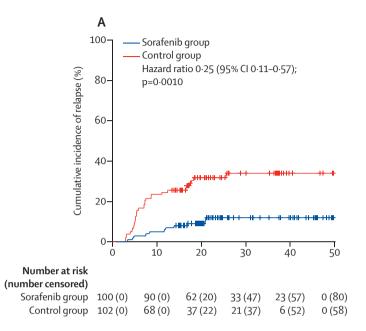
Severe Chronic GVHD 10%

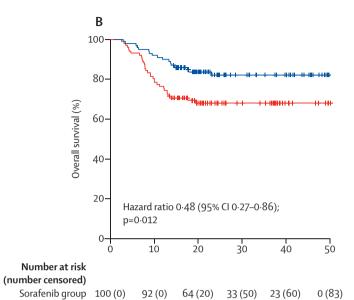
De Lima M et al. Biol Blood Marrow Transplant, 2018, 24, 2017-2024 (ClinicalTrials.gov NCT01835587)

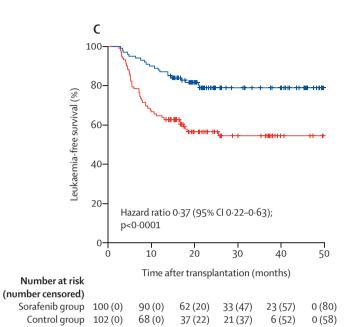

Biol Blood Marrow Transplant 21 (2015) 653-660

Treatment of Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapse after Allogeneic Stem Cell Transplantation with Azacitidine and Donor Lymphocyte Infusions— A Retrospective Multicenter Analysis from the German Cooperative Transplant Study Group

Thomas Schroeder ^{1,*}, Elena Rachlis ¹, Gesine Bug ², Matthias Stelljes ³, Stefan Klein ⁴, Nina Kristin Steckel ⁵, Dominik Wolf ⁶, Mark Ringhoffer ⁷, Akos Czibere ¹, Kathrin Nachtkamp ¹, Ariane Dienst ¹, Mustafa Kondakci ¹, Michael Stadler ⁸, Uwe Platzbecker ⁹, Lutz Uharek ¹⁰, Thomas Luft ¹¹, Roland Fenk ¹, Ulrich Germing ¹, Martin Bornhäuser ⁹, Nicolaus Kröger ¹², Dietrich W. Beelen ⁵, Rainer Haas ¹, Guido Kobbe ¹


Overall survival after treatment with Aza and DLI in 154 patients


Schroeder T et al. Biol Blood Marrow Transplant. 2015. 21, 653e660


First-Generation FLT3 Inhibitors

Drug	No.	Schedule	Strategy	Endpoint	Main results	References
SORAFENIB	22	28-day cycles 400mgx2 for 12 cycles from d45-d120	maintenance	Tollerability and feasibility	1-year PFS 85% 2-year DFS 58% 1-year OS 95%	Chen YB, Phase I, 2014
	26	28-day cycles 400mgx2 or 200mgx2 for 12 cycles from d45-d120	maintenance	Primary End Point RFS Secondary End Point OS	2-year PFS 82% vs 53% 2-year OS 81% vs 61%	<i>Battipaglia G,</i> retrospective, randomized 2017
	44	28-day cycles 200mgx2→400mgx2 (24 months) from d30-d120	maintenance	Primary End Point individualize sorafenib dose	2-year OS 76%, 2-year EFS 74% 3-year OS 76%, 3-year EFS 64% 4-year OS 57%, 4-year EFS 64%	Pratz KW, Prospectic 2020
	202	28-day cycles 400mgx2 until +180 from d30-d60	maintenance	Primary End Point RFS Secondary End Point OS	1-year RFS 7 vs 24.5% 2-year RFS 13 vs 31% OS better	Xuan L, Phase III, prospective, randomised, double-blind, 2020
	83	28-day cycles 400mgx2 for 24 months from d60-d100	maintenance	Primary End Point RFS Secondary End Point OS	Reduction relapse and death risk	Burchert A, SORMAIN trial , Phase II, prospective, randomised, open-label 2020
MIDOSTAURIN	75	28-day cycles 50mgx2 for 9-10 months from d31-d100	maintenance	Primary End Point EFS Secondary End Point OS	2-year EFS 37.7% 2-year OS 51%	Shlenk RF, Phase II, prospectic, multicentric 2019
	60	28-day cycles 50mgx2 for 12 months from d28-d60	maintenance	Primary End Point RFS Secondary End Point OS	No benefit	<i>Maziarz RT</i> , RADIUS trial, Phase II, prospective, randomised, open-label 2021

Chen, YB et al. *Biol. Blood Marrow Transplant.* **2014** 20, 2042–2048 Battipaglia G. et al. *Cancer* **2017**; 123, 2867–2874 Pratz KW et al. *Biol. Blood Marrow Transplant.* **2020** 26, 300–306 Xuan L, et al *Lancet Oncol.* **2020**;21(9):1201-1212

Table 3: Adverse events irrespective of causality

81(0)

Control group 102 (0)

	Sorafenib group (n=100)			Control gro	Control group (n=102)		
	Grade 1–2	Grade 3	Grade 4	Grade 1–2	Grade 3	Grade 4	
Haematological*		12 (12%)	3 (3%)		5 (5%)	2 (2%)	
Platelets decreased		10 (10%)	3 (3%)		4 (4%)	2 (2%)	
Neutrophils decreased		7 (7%)	2 (2%)		3 (3%)	1(1%)	
Skin†	20 (20%)	6 (6%)	1(1%)	9 (9%)	1 (1%)	0	
Gastrointestinal†	25 (25%)	11 (11%)	0	20 (20%)	8 (8%)	0	
Hepatobiliary or pancreatic†	16 (16%)	5 (5%)	0	17 (17%)	6 (6%)	0	
Cardiac	14 (14%)	0	0	12 (12%)	1 (1%)	0	
Renal or genitourinary	23 (23%)	4 (4%)	0	25 (25%)	5 (5%)	0	
Vascular	6 (6%)	1(1%)	0	5 (5%)	1 (1%)	0	
Infections‡	8 (8%)	21 (21%)	4 (4%)	9 (9%)	19 (19%)	5 (5%)	
Acute GVHD	8 (8%)	18 (18%)	5 (5%)	6 (6%)	15 (15%)	6 (6%)	
Chronic GVHD§	5 (5%)	15 (15%)	3 (3%)	5 (5%)	13 (13%)	4 (4%)	
Secondary malignant disease¶		0	2 (2%)		0	2 (2%)	

48 (22) 30 (40)

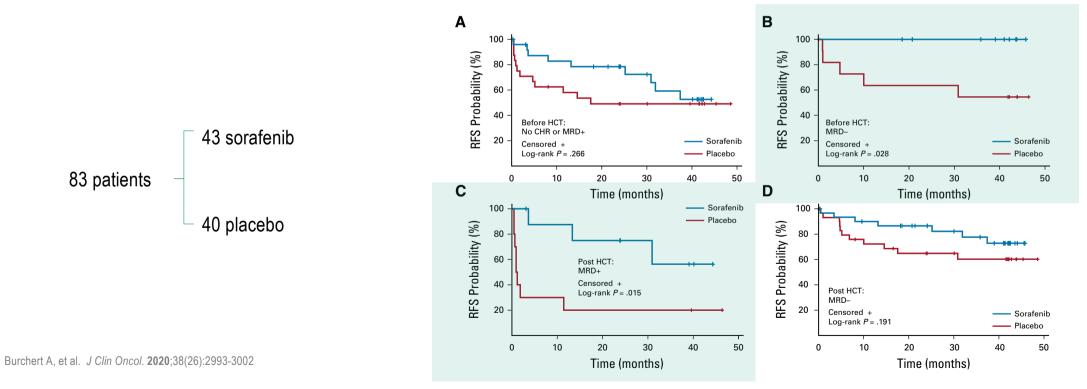
10 (60)

1(69)

Xuan, L. et al. Lancet Oncol. 21, 1201–1212 (2020)

	Sorafenib group (events, n/ patients, N)	Control group (events, n/ patients, N)	Cumulative incidence of relapse in sorafenib group at 2 years (95% CI)	Cumulative incidence of relapse in control group at 2 years (95% Cl)	Hazard ratio (95% CI)
Gender					
Male	7/50	16/52	15.0% (6.4-27.0)	30.1% (17.8-43.4)	0.35 (0.15-0.86
Female	4/50	16/50	8.8% (2.7-19.6)	33.2% (20.2-46.7)	0.21 (0.07-0.6
Patient age, years*					
≥35	4/50	18/49	8.0% (2.5-17.7)	38.7% (24.4–52.7)	0.17 (0.06-0.5
<35	7/50	14/53	16.1% (6.8-28.9)	25.1% (14.2-37.7)	0.45 (0.18-1.11
White blood cell count at diagnosis*					
≥64×10° per L	5/46	16/55	11.2% (4.0-22.5)	30.0% (18.2-42.7)	0.31 (0.11-0.89
<64×10° per L	6/54	16/47	13.1% (5.1-25.0)	33.9% (20.1-48.2)	0.26 (0.10-0.6
Cytogenetic risk					
Low	0/6	0/4	0.0% (0.0-0.0)	0.0% (0.0–0.0)	NA
Intermediate	8/80	27/85	11.1% (5.0–19.7)	31.5% (21.7-41.8)	0.26 (0.12-0.57
High	1/7	1/5	14.3% (0.5-49.6)	26.7% (0.2–75.1) –	0.71 (0.04–11.
Unknown	2/7	4/8	28.6% (2.9-64.1)	50.0% (12.5-79.4)	0.54 (0.10-2.98
NPM1 mutation					
Without	7/71	22/76	10.6% (4.6–19.6)	28.6% (18.7-39.4)	0.28 (0.12-0.66
Concomitant	4/29	10/26	15.1% (4.5-31.7)	41.3% (20.4-61.2)	0.26 (0.08-0.8
Sorafenib pretransplantation					
No use	6/41	19/45	15.3% (6.1-28.4)	43.9% (28.4–58.2)	
Use	5/59	13/57	9.5% (3.3-19.6)	21.7% (11.8-33.5)	0.34 (0.12-0.96
Disease status at transplantation					
CR1	8/79	20/84	11.5% (5.2-20.4)	24.0% (15.1-34.0)	0.35 (0.15-0.80
≥CR2	3/21	12/18	14.3% (3.4-32.7)	66.7% (38.5-84.2)	0.13 (0.04-0.4
CRc status at transplantation					
CRp or CRi	4/27	11/23	15.2% (4.6-31.5)	47.8% (26.2-66.6)	0.23 (0.07-0.74
CR	7/73	21/79	10.8% (4.6–20.0)	26.7% (17.1-37.3)	0.29 (0.12-0.69
MRD at transplantation					
Negative	4/69	15/68	6.9% (2.1-15.5)	21.6% (12.4-32.5)	0.21 (0.07-0.64
Positive	7/31	17/34	23.1% (9.9-39.5)	51.5% (32.7-67.4)	0.33 (0.14-0.79
Transplant modality					
MSD	2/44	13/39	5.6% (0.9-17.1)	31.0% (17.2-45.9)	0.11 (0.03-0.50
MUD	1/8	1/6	12.5% (0.5-44.8)	16.7% (0.5–54.9) —	0.66 (0.04–10.
HID	8/48	18/57	17.5% (8.0-30.0)	33.6% (21.1-46.6)	0.42 (0.18-0.9
MRD at the time of enrolment post-tr	ansplantation				
Negative	8/91	24/91	9.8% (4.5–17.6)	26.3% (17.5-36.0)	
Positive	3/9	8/11	33·3% (6·5–64·2)	77-3% (24-3-95-4)	0.25 (0.06-0.9
Acute GVHD					
No	4/56	23/60	7.3% (2.3–16.2)	37.7% (25.1–50.1) –	0.14 (0.05-0.4
Yes	7/44	9/42	17.7% (7.5–31.5)	23.0% (11.1-37.4)	0.65 (0.24–1.76
Chronic GVHD†					
No	8/52	20/54	16.9% (7.6–29.3)	35.1% (21.9-48.5)	0.35 (0.15-0.77
Yes	3/47	12/45	6.8% (1.7-17.0)	27·3% (15·0–41·1)	0.21 (0.06-0.74
All patients	11/100	32/102	11.9% (6.2–19.6)	31.6% (22.6-41.1)	0.29 (0.15-0.5

Xuan, L. et al. Lancet Oncol. 21, 1201–1212 (2020)


Favours sorafenib Favours control

First-Generation FLT3 Inhibitors

Drug	No.	Schedule	Strategy	Endpoint	Main results	References
SORAFENIB	22	28-day cycles 400mgx2 for 12 cycles from d45-d120	maintenance	Tollerability and feasibility	1-year PFS 85% 2-year DFS 58% 1-year OS 95%	Chen YB, Phase I, 2014
	26	28-day cycles 400mgx2 or 200mgx2 for 12 cycles from d45-d120	maintenance	Primary End Point RFS Secondary End Point OS	2-year PFS 82% vs 53% 2-year OS 81% vs 61%	<i>Battipaglia G,</i> retrospective, randomized 2017
	44	28-day cycles 200mgx2→400mgx2 (24 months) from d30-d120	maintenance	Primary End Point individualize sorafenib dose	2-year OS 76%, 2-year EFS 74% 3-year OS 76%, 3-year EFS 64% 4-year OS 57%, 4-year EFS 64%	Pratz KW, Prospectic 2020
	202	28-day cycles 400mgx2 until +180 from d30-d60	maintenance	Primary End Point RFS Secondary End Point OS	1-year RFS 7 vs 24.5% 2-year RFS 13 vs 31% OS better	Xuan L, Phase III, prospective, randomised, double-blind, 2020
	83	28-day cycles 400mgx2 for 24 months from d60-d100	maintenance	Primary End Point RFS Secondary End Point OS	Reduction relapse and death risk	Burchert A, SORMAIN trial , Phase II, prospective, randomised, open-label 2020
MIDOSTAURIN	75	28-day cycles 50mgx2 for 9-10 months from d31-d100	maintenance	Primary End Point EFS Secondary End Point OS	2-year EFS 37.7% 2-year OS 51%	Shlenk RF, Phase II, prospectic, multicentric 2019
	60	28-day cycles 50mgx2 for 12 months from d28-d60	maintenance	Primary End Point RFS Secondary End Point OS	No benefit	<i>Maziarz RT</i> , RADIUS trial, Phase II, prospective, randomised, open-label 2021

Chen, YB et al. *Biol. Blood Marrow Transplant.* **2014** 20, 2042–2048 Battipaglia G. et al. *Cancer* **2017**; 123, 2867–2874 Pratz KW et al. *Biol. Blood Marrow Transplant.* **2020** 26, 300–306 Xuan L, et al *Lancet Oncol.* **2020**;21(9):1201-1212

	Sorafeni	$b (n = 42^{a})$	Placebo (n = 39^a)		
Grade 3 and 4 AE Type	All	Drug Related	AII	Drug Related	
Neutropenia	1 (2.4)	1 (2.4)	1 (2.6)	1 (2.6)	
Thrombocytopenia	2 (4.8)	0	1 (2.6)	0	
Liver toxicity: ALT, AST increased	2 (4.8)	0	2 (5.1)	2 (5.1)	
GI toxicity (vomiting, nausea, diarrhea)	6 (14.3)	2 (4.8)	6 (15.4)	3 (7.7)	
Skin toxicity	5 (11.9)	2 (4.8)	1 (2.6)	1 (2.6)	
Infections	11 (26.2)	1 (2.4)	9 (23.1)	2 (5.1)	
Overall GvHD rate	32 (76.8)	—	23 (59.8)	—	
aGvHD (grade \geq 2)	10 (24)		7 (18.2)		
cGvHD (mild/moderate)	18 (42.9)	—	14 (35.9)	—	
cGvHD (severe)	8 (19.2)	—	4 (10.4)		
Cardiotoxicity and renal insufficiency	4 (9.5)	1 (2.4)	1 (2.6)	0	
Electrolyte alterations	6 (14.3)	3 (7.1)	1 (2.6)	0	
Other	33 (78.6)	8 (19.1)	22 (56.4)	4 (10.3)	

TABLE 3. Incidence of AE (safety population)

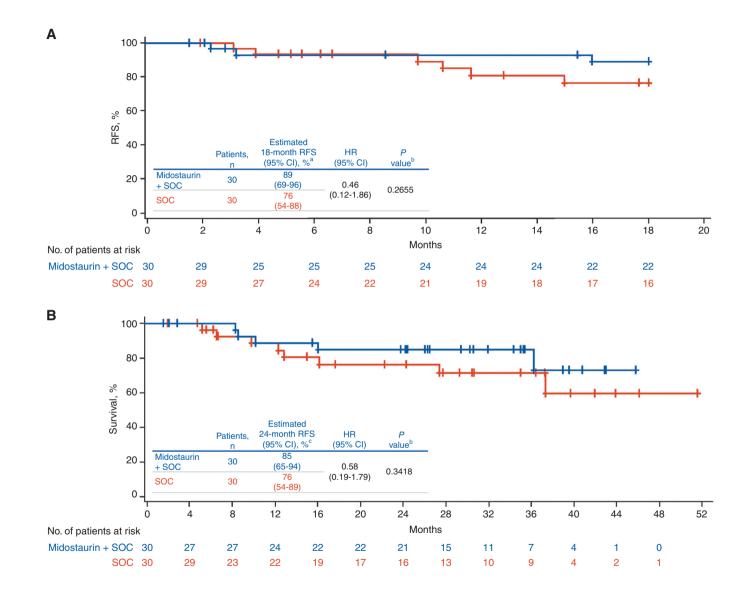
Burchert, A. et al. Journal of Clinical Oncology vol. 38 2993-3002 Preprint at https://doi.org/10.1200/jco.19.03345 (2020)

First Generation FLT3 Inhibitors

Drug	No.	Schedule	Strategy	Endpoint	Main results	References
SORAFENIB	22	28-day cycles 400mgx2 for 12 cycles from d45-d120	maintenance	Tollerability and feasibility	1-year PFS 85% 2-year DFS 58% 1-year OS 95%	Chen YB, Phase I, 2014
	26	28-day cycles 400mgx2 or 200mgx2 for 12 cycles from d45-d120	maintenance	Primary End Point RFS Secondary End Point OS	2-year PFS 82% vs 53% 2-year OS 81% vs 61%	<i>Battipaglia G,</i> retrospective, randomized 2017
	44	28-day cycles 200mgx2→400mgx2 (24 months) from d30-d120	maintenance	Primary End Point individualize sorafenib dose	2-year OS 76%, 2-year EFS 74% 3-year OS 76%, 3-year EFS 64% 4-year OS 57%, 4-year EFS 64%	Pratz KW, Prospectic 2020
	202	28-day cycles 400mgx2 until +180 from d30-d60	maintenance	Primary End Point RFS Secondary End Point OS	1-year RFS 7 vs 24.5% 2-year RFS 13 vs 31% OS better	Xuan L, Phase III, prospective, randomised, double-blind, 2020
	83	28-day cycles 400mgx2 for 24 months from d60-d100	maintenance	Primary End Point RFS Secondary End Point OS	Reduction relapse and death risk	Burchert A, SORMAIN trial , Phase II, prospective, randomised, open-label 2020
MIDOSTAURIN	75	28-day cycles 50mgx2 for 9 months from d31-d100	maintenance	Primary End Point EFS Secondary End Point OS	2-year EFS 37.7% 2-year OS 51%	<i>Shlenk RF</i> , Phase II, prospectic, multicentric 2019
	60	28-day cycles 50mgx2 for 12 months from d28-d60	maintenance	Primary End Point RFS Secondary End Point OS	No benefit	<i>Maziarz RT</i> , RADIUS trial, Phase II, prospective, randomised, open-label 2021

Chen, YB et al. *Biol. Blood Marrow Transplant.* **2014** 20, 2042–2048 Battipaglia G. et al. *Cancer* **2017**; 123, 2867–2874 Pratz KW et al. *Biol. Blood Marrow Transplant.* **2020** 26, 300–306 Xuan L, et al *Lancet Oncol.* **2020**;21(9):1201-1212

	All patients (n = 97), n (%)	After alloHCT (n = 75), n (%)	After HiDAC (n = 22), n (%)	Р
Gastrointestinal	68 (70)	60 (80)	8 (36)	.0001
Infection Febrile neutropenia	49 (51) 14 (14)	42 (56) 10 (13)	7 (32) 4 (18)	.06 .73
Blood/marrow	46 (47)	39 (52)	1 (5)	<.0001
Pain	37 (38)	34 (45)	3 (14)	<.0001
Constitutional	35 (36)	29 (39)	6 (27)	.45
Allergy/immunology	33 (34)	32 (43)	1 (5)	.006
Metabolic/laboratory	37 (38)	35 (47)	2 (9)	.15
Dermatological	29 (30)	27 (36)	2 (9)	.02
Neurologic	24 (25)	20 (27)	4 (18)	.58
Renal/genitourinary	23 (24)	23 (31)		.001
Pulmonary/upper respiratory	16 (16)	15 (20)	1 (5)	.11
Musculoskeletal/soft tissue	13 (13)	11 (15)	2 (9)	.73
Ocular/visual	13 (13)	12 (16)	1 (5)	.29
Cardiac general	13 (13)	11 (15)	2 (9)	.72
Hemorrhage/bleeding	7 (7)	7 (9)		.34
Auditory/ear	7 (7)	7 (9)		.34
Cardiac arrhythmia	5 (5)	2 (3)	3 (14)	.07
Hepatobiliary/pancreas	4 (4)	4 (5)		.57
Secondary malignancy	2 (2)	2 (3)		.99
Other	18 (19)	16 (21)	2 (9)	.35


Table 4. Toxicities grade 3 or above, according to MedRA category coding occurring at least once during maintenance therapy

Schlenk, R. F. et al. Blood 133, 840-851 (2019)

First Generation FLT3 Inhibitors

Drug	No.	Schedule	Strategy	Endpoint	Main results	References
SORAFENIB	22	28-day cycles 400mgx2 for 12 cycles from d45-d120	maintenance	Tollerability and feasibility	1-year PFS 85% 2-year DFS 58% 1-year OS 95%	Chen YB, Phase I, 2014
	26	28-day cycles 400mgx2 or 200mgx2 for 12 cycles from d45-d120	maintenance	Primary End Point RFS Secondary End Point OS	2-year PFS 82% vs 53% 2-year OS 81% vs 61%	<i>Battipaglia G,</i> retrospective, randomized 2017
	44	28-day cycles 200mgx2→400mgx2 (24 months) from d30-d120	maintenance	Primary End Point individualize sorafenib dose	2-year OS 76%, 2-year EFS 74% 3-year OS 76%, 3-year EFS 64% 4-year OS 57%, 4-year EFS 64%	Pratz KW, Prospectic 2020
	202	28-day cycles 400mgx2 until +180 from d30-d60	maintenance	Primary End Point RFS Secondary End Point OS	1-year RFS 7 vs 24.5% 2-year RFS 13 vs 31% OS better	<i>Xuan L</i> , Phase III, prospective, randomised, double-blind, 2020
	83	28-day cycles 400mgx2 for 24 months from d60-d100	maintenance	Primary End Point RFS Secondary End Point OS	Reduction relapse and death risk	<i>Burchert A</i> , SORMAIN trial , Phase II, prospective, randomised, open-label 2020
MIDOSTAURIN	75	28-day cycles 50mgx2 for 9-10 months from d31-d100	maintenance	Primary End Point EFS Secondary End Point OS	2-year EFS 37.7% 2-year OS 51%	<i>Shlenk RF</i> , Phase II, prospectic, multicentric 2019
	60	28-day cycles 50mgx2 for 12 months from d28-d60	maintenance	Primary End Point RFS Secondary End Point OS	No benefit	<i>Maziarz RT</i> , RADIUS trial, Phase II, prospective, randomised, open-label 2021

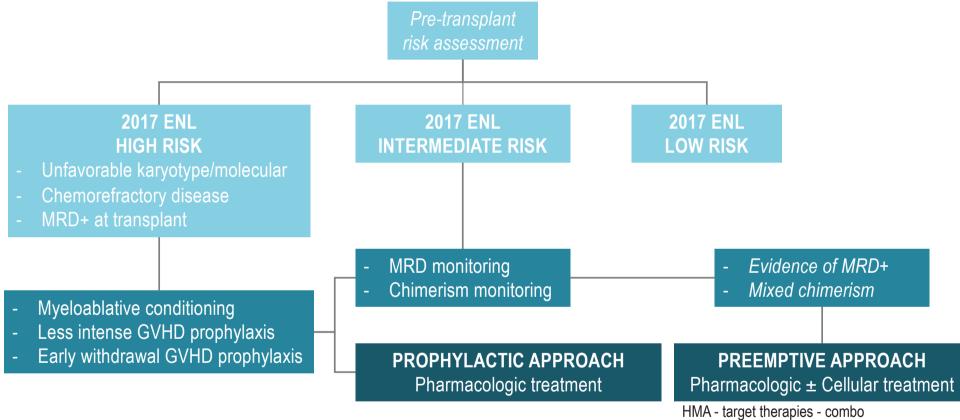
Chen, YB et al. *Biol. Blood Marrow Transplant.* **2014** 20, 2042–2048 Battipaglia G. et al. *Cancer* **2017**; 123, 2867–2874 Pratz KW et al. *Biol. Blood Marrow Transplant.* **2020** 26, 300–306 Xuan L, et al *Lancet Oncol.* **2020**;21(9):1201-1212

Maziarz, RT et al. Bone Marrow Transplant. 2021, 1180–1189

AE, n (%)	Midostaurii $(n = 30)$	n + SOC	$\begin{array}{l}\text{SOC}\\(n=30)\end{array}$		
	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3	
Vomiting	7 (23)	1 (3)	22 (73)	2 (7)	
Nausea	8 (27)	3 (10)	20 (67)	1 (3)	
Diarrhea	7 (23)	1 (3)	12 (40)	3 (10)	
Fatigue	9 (30)	0	8 (27)	1 (3)	
Peripheral edema	9 (30)	0	8 (27)	0	
Headache	7 (23)	0	8 (27)	0	
Cough	6 (20)	0	8 (27)	0	
ALT increased	7 (23)	4 (13)	6 (20)	3 (10)	
Anemia	6 (20)	2 (7)	7 (23)	3 (10)	
AST increased	8 (27)	4 (13)	5 (17)	2 (7)	
Pruritus	6 (20)	0	7 (23)	3 (10)	
Dry eye	6 (20)	0	5 (17)	0	
Pyrexia	5 (17)	1 (3)	4 (20)	0	
Rash	6 (20)	0	6 (17)	0	
Tremor	4 (13)	0	7 (23)	0	
Dyspnea	7 (23)	1 (3)	3 (10)	0	
Insomnia	6 (20)	0	4 (13)	0	
Neutrophil count decreased	3 (10)	2 (7)	7 (23)	4 (13)	
Arthralgia	6 (20)	1 (3)	3 (10)	0	
Dizziness	6 (20)	0	3 (10)	0	
Hypertension	6 (20)	4 (13)	3 (10)	0	
Upper respiratory tract infection	6 (20)	0	3 (10)	0	

Table 2 Most common AEs (occurring in $\geq 15\%$ of patients).

GVHD, <i>n</i> (%) ^a	$ \begin{array}{l} \text{Midostaurin} + \text{SOC} \\ (n = 30) \end{array} $	$\begin{array}{c} \text{SOC} \\ (n = 30) \end{array}$	
Acute	15 (50)	16 (53)	
Grade I	7 (23)	4 (13)	
Grade II	8 (27)	10 (33)	
Grade III	0	2 (7)	
Grade IV	0	0	
Chronic	9 (30)	10 (33)	
Mild	2 (7)	5 (17)	
Moderate	5 (17)	4 (13)	
Severe	2 (7)	1 (3)	


Maziarz, R. T. et al. Bone Marrow Transplant. 56, 1180-1189 (2021)

Second Generation FLT3 Inihbitors

Drug	No.	Schedule	Strategy	Endpoint	Main results	References
GILTERITINIB	346	120 mg/day for 12 months from d60-d90	maintenance	Primary End Point RFS Secondary End Point OS	Result expected in 2025	MORPHO Trial, Phase III, randomized, double-blind
	768	for 24 months	maintenance	Primary End Point RFS Secondary End Point OS and CR rate	Result expected in 2023	HOVON/AML-SG Trial, Phase III, randomized (gliteritinib vs. midostaurin)
QUIZARTINIB	539	120 mg/day for 36 months		Primary End Point EFS Secondary End Point OS	Result expected in 2022	QUANTUM FIRST Trial, Phase III, randomized, double-blind
CRENOLANIB	48	100 mg TID from d30-d90 for 24 months	maintenance	Primary End Point PFS Secondary End Point OS and DFS	Result expected in 2022	Phase II, open-label, uncontrolled
	510	100 mg TID for 12 months	maintenance	Primary End Point EFS Secondary End Point OS	Result expected in 2025	Phase III, randomized (crenolanib vs. midostaurin)

Drug Class/ Intervention	Description	Duration of main- tenance therapy	Status	Clinical Trial Identifier
Gilteritinib	Phase 3 double-blind, placebo RCT in FLT3-ITD AML	Up to 2 years maintenance	Completed accrual, 356 participants	NCT02997202 (BMT-CTN 1506)
Quizartinib	Phase 3, double-blind, placebo RCT (upfront and as maintenance) in FLT3-ITD AML	36 months of treatment	Completed accrual, 539 participants	NCT02668653 (QUANTUM-First)
Crenolanib	Phase 2, open label/single arm in FLT3+ AML	Up to 2 years maintenance	Completed accrual, 48 participants	NCT02400255
Enasidenib	Phase 1, open label in AML/MDS/CMML	Up to 12 months	Completed accrual w/initial results, 16 participants	NCT03515512
Ivosidenib	Phase 1 open label in AML/MDS/CMML	Up to 12 months	Completed accrual, 18 participants, initial results expected in late 2022	NCT03564821
Oral azacitidine	Phase 3, double-blind, placebo RCT in AML/MDS	Up to 12 months	Recruiting, estimated enrollment 324 participants	NCT04173533
Oral decitabine/ cedazuridine	Phase 1, open label in MDS/CMML	Up to 2 years	Recruiting, estimated enrollment 22 participants	NCT04980404
Azacitidine + Venetoclax	Phase 1, open label in high risk AML/MDS/MPN overlap	Up to 12 months	Recruiting, estimated enrollment 68 participants	NCT03613532
Azacitidine + Venetoclax	Phase 2, open label trial in AML and other hematologic malignancies	Up to 12 months	Recruiting, estimated enrollment 125 participants	NCT04128501
Azacitidine + Venetoclax	Phase 3, open label RCT in AML	Up to 24 months	Recruiting, estimated enrollment 424 participants	NCT04161885 (VIALE-T)
Azacitidine + eprenetapopt	Phase 2, open label trial in TP3 mutated AML/ MDS	Up to 12 months	Completed recruitment, 33 participants	NCT03931291
Panobinostat	Phase 3, open label RCT in AML/MDS	Unclear but at least 1 year	Completed recruitment, 52 participants	NCT04326764
DC/AML fusion cell vaccine	Phase 1 – 2 vaccines, 3 weeks apart, +/- decitabine	2 vaccines	Recruiting, estimated enrollment 45 participants	NCT03679650

Interventional Flow Chart

DLI every 4-6 weeks

Conclusions

- ✓ Relapse remains the leading cause of transplant failure
- ✓ High interest on maintenance/preemptive approach after transplant
- \checkmark Most promising data support the use of FLT3 inhibitors
- ✓ Other promising agents needs clinical trials
- ✓ In the next years will be available results on Gilteritinib, IDH Inhibitors, oral Azacitidin, Venetoclax, Panobinostat and Cellular Therapies
- ✓ Ongoing clinical trial are evaluating double and triple-combo (HMA+Venetoclax+IDH inhibitors or HMA+Venetoclax+FLT3 inhibitors)

"90% of what we hold true in cancer research and clinical care, will be obsolete in 10 years"

Emil Freireich, MD A "founding father" of modern chemotherapy for leukemia University of Texas M.D. Anderson Cancer Center

Acknowledgements

EMATOLOGIA

Filippo Gherlinzoni Piero Maria Stefani Francesca Cibien Cristina Danesin Marco Danini Mauro Endri Anna Furlan Francesca Sartori Elisabetta Scarpa Dario Schiavo Giorgia Scotton Flavia Zanetti Ivano Seccafien Chiara Zaina **DIREZIONE** Francesco Benazzi

UNIVERSITY OF ILLINOIS Damiano Rondelli

IN TRANSITO Gabriella De Cicco Christian Di Pietro

UNIVERSITÀ DI BOLOGNA Russell E Lewis

SERVIZIO TRASFUSIONALE

Arianna Veronesi Enrica Pacquola Donatella Sartor Elisabetta Durante Debora Lorenzon Daniela Scarpelli Arianna De Pellegrin

616.ACUTE MYELOID LEUKEMIA: NOVEL THERAPY, EXCLUDING TRANSPLANTATION | NOVEMBER 13, 2019

Venetoclax in Combination with Gilteritinib in Patients with Relapsed/Refractory Acute Myeloid Leukemia: A Phase 1b Study

Alexander E. Perl, MD,¹ Naval G. Daver, MD,² Keith W. Pratz, MD,³ Joseph Maly, MD,⁴ Wan-Jen Hong, MD,⁵ Erkut Bahceci,⁶ Bo Tong, PhD,^{*,7} Tian Tian, PhD,^{*,8} Kimberley Dilley, MD MPH^{*,9}

¹Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA

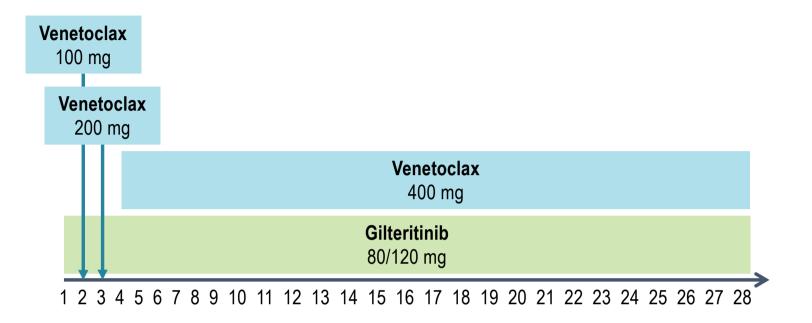
²University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX

³Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD

⁴Norton Cancer Institute, Louisville, KY

⁵Genentech, Inc., South San Francisco, CA

⁶Astellas Pharma Global Development, Northbrook, IL


⁷AbbVie Inc., North Chicago, IL

⁸AbbVie, Inc., North Chicago, IL

⁹AbbVie, Inc., Waukegan, IL

bloodjournal Blood blood (2019) 134 (Supplement_1) : 3910.

http://doi.org/10.1182/blood-2019-127416

Response	No. (%)
CR	5 (50%)
PR	4 (40%)
RD	1 (10%)
Mortality <30 days	0

Perl A et al. *Blood.* **2019** 134 (Supplement 1) : 3910